Unsupervised Document Embedding With CNNs
نویسندگان
چکیده
We propose a new model for unsupervised document embedding. Existing approaches either require complex inference or use recurrent neural networks that are difficult to parallelize. We take a different route and use recent advances in language modeling to develop a convolutional neural network embedding model. This allows us to train deeper architectures that are fully parallelizable. Stacking layers together increases the receptive field allowing each successive layer to model increasingly longer range semantic dependencies within the document. Empirically, we demonstrate superior results on two publicly available benchmarks.
منابع مشابه
A New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملUnsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adve...
متن کاملLearning from Small Sample Sets by Combining Unsupervised Meta-Training with CNNs
This work explores CNNs for the recognition of novel categories from few examples. Inspired by the transferability properties of CNNs, we introduce an additional unsupervised meta-training stage that exposes multiple top layer units to a large amount of unlabeled real-world images. By encouraging these units to learn diverse sets of low-density separators across the unlabeled data, we capture a...
متن کاملCombining Low-Density Separators with CNNs
This work explores CNNs for the recognition of novel categories from few examples. Inspired by the transferability analysis of CNNs, we introduce an additional unsupervised meta-training stage that exposes multiple top layer units to a large amount of unlabeled real-world images. By encouraging these units to learn diverse sets of low-density separators across the unlabeled data, we capture a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017